Module Bits_list.Int_comb

Uses 0,1 as the bit type.

include Comb.S with type t = Base.int Base.list
type t = Base.int Base.list
val sexp_of_t : t -> Sexplib0.Sexp.t
include Base.Equal.S with type t := t
val equal : t Base__Equal.equal
val empty : t

the empty signal

val is_empty : t -> Base.bool
val (--) : t -> Base.string -> t

names a signal

let a = a -- "a" in ...

signals may have multiple names.

val width : t -> Base.int

returns the width (number of bits) of a signal.

let w = width s in ...

val address_bits_for : Base.int -> Base.int

addess_bits_for num_elements returns the address width required to index num_elements.

It is the same as Int.ceil_log2, except it wll return a minimum value of 1 (since you cannot have 0 width vectors). Raises if num_elements is < 0.

val num_bits_to_represent : Base.int -> Base.int

num_bits_to_represent x returns the number of bits required to represent the number x, which should be >= 0.

val of_constant : Constant.t -> t
val to_constant : t -> Constant.t
val constb : Base.string -> t

convert binary string to constant

val of_bit_string : Base.string -> t
val of_int : width:Base.int -> Base.int -> t

convert integer to constant

val of_int32 : width:Base.int -> Base.int32 -> t
val of_int64 : width:Base.int -> Base.int64 -> t
val of_hex : ?signedness:Constant.Signedness.t -> width:Base.int -> Base.string -> t

convert hex string to a constant. If the target width is greater than the hex length and signedness is Signed then the result is sign extended. Otherwise the result is zero padded.

val of_octal : ?signedness:Constant.Signedness.t -> width:Base.int -> Base.string -> t

convert octal string to a constant. If the target width is greater than the octal length and signedness is Signed then the result is sign extended. Otherwise the result is zero padded.

val of_z : width:Base.int -> Hardcaml__.Zarith.Z.t -> t

Convert an arbitrarily wide integer value to a constant.

val of_string : Base.string -> t

convert verilog style or binary string to constant

val of_bit_list : Base.int Base.list -> t

convert IntbitsList to constant

val of_decimal_string : width:Base.int -> Base.string -> t
val of_char : Base.char -> t

convert a char to an 8 bit constant

val of_bool : Base.bool -> t

convert a bool to vdd or gnd

val to_z : t -> signedness:Constant.Signedness.t -> Hardcaml__.Zarith.Z.t

Convert bits to a Zarith.t

val constv : Base.string -> t
val consti : width:Base.int -> Base.int -> t
val consti32 : width:Base.int -> Base.int32 -> t
val consti64 : width:Base.int -> Base.int64 -> t
val constibl : Base.int Base.list -> t
val consthu : width:Base.int -> Base.string -> t
val consths : width:Base.int -> Base.string -> t
val const : Base.string -> t
val constd : width:Base.int -> Base.string -> t
val concat_msb : t Base.list -> t

concat ts concatenates a list of signals - the msb of the head of the list will become the msb of the result.

let c = concat [ a; b; c ] in ...

concat raises if ts is empty or if any t in ts is empty.

val concat_lsb : t Base.list -> t

Similar to concat_msb except the lsb of the head of the list will become the lsb of the result.

val concat_msb_e : t Base.list -> t

same as concat_msb except empty signals are first filtered out

val concat_lsb_e : t Base.list -> t

same as concat_lsb except empty signals are first filtered out

val (@:) : t -> t -> t

concatenate two signals.

let c = a @: b in ...

equivalent to concat [ a; b ]

val vdd : t

logic 1

val is_vdd : t -> Base.bool
val gnd : t

logic 0

val is_gnd : t -> Base.bool
val zero : Base.int -> t

zero w makes a the zero valued constant of width w

val ones : Base.int -> t

ones w makes a constant of all ones of width w

val one : Base.int -> t

one w makes a one valued constant of width w

val select : t -> Base.int -> Base.int -> t

select t hi lo selects from t bits in the range hi...lo, inclusive. select raises unless hi and lo fall within 0 .. width t - 1 and hi >= lo.

val select_e : t -> Base.int -> Base.int -> t

same as select except invalid indices return empty

val bit : t -> Base.int -> t

select a single bit

val msb : t -> t

get most significant bit

val lsbs : t -> t

get least significant bits

val lsb : t -> t

get least significant bit

val msbs : t -> t

get most significant bits

val drop_bottom : t -> Base.int -> t

drop_bottom s n drop bottom n bits of s

val drop_top : t -> Base.int -> t

drop_top s n drop top n bits of s

val sel_bottom : t -> Base.int -> t

sel_bottom s n select bottom n bits of s

val sel_top : t -> Base.int -> t

sel_top s n select top n bits of s

val (.:[]) : t -> (Base.int * Base.int) -> t

x.:[hi, lo] == select x hi lo

val (.:+[]) : t -> (Base.int * Base.int Base.option) -> t

x.:+[lo, width] == select x (lo + width - 1) lo. If width is None it selects all remaining msbs of the vector ie x.:+[lo,None] == drop_bottom x lo

val (.:-[]) : t -> (Base.int Base.option * Base.int) -> t

x.:-[hi, width] == select x hi (hi - width + 1). If hi is None it defaults to the msb of the vector ie x.:-[None, width] == sel_top x width

val (.:()) : t -> Base.int -> t

x.(i) == bit x i

val insert : into:t -> t -> at_offset:Base.int -> t

insert ~into:t x ~at_offset insert x into t at given offet

val mux : t -> t Base.list -> t

multiplexer.

let m = mux sel inputs in ...

Given l = List.length inputs and w = width sel the following conditions must hold.

l <= 2**w, l >= 2

If l < 2**w, the last input is repeated.

All inputs provided must have the same width, which will in turn be equal to the width of m.

val mux2 : t -> t -> t -> t

mux2 c t f 2 input multiplexer. Selects t if c is high otherwise f.

t and f must have same width and c must be 1 bit.

Equivalent to mux c [f; t]

val mux_init : t -> Base.int -> f:( Base.int -> t ) -> t
val (&:) : t -> t -> t

logical and

val (&:.) : t -> Base.int -> t
val (&&:) : t -> t -> t

a <>:. 0 &: b <>:. 0

val (|:) : t -> t -> t

logical or

val (|:.) : t -> Base.int -> t
val (||:) : t -> t -> t

a <>:. 0 |: b <>:. 0

val (^:) : t -> t -> t

logic xor

val (^:.) : t -> Base.int -> t
val (~:) : t -> t

logical not

val (+:) : t -> t -> t

addition

val (+:.) : t -> Base.int -> t
val (-:) : t -> t -> t

subtraction

val (-:.) : t -> Base.int -> t
val negate : t -> t

negation

val (*:) : t -> t -> t

unsigned multiplication

val (*+) : t -> t -> t

signed multiplication

val (==:) : t -> t -> t

equality

val (==:.) : t -> Base.int -> t
val (<>:) : t -> t -> t

inequality

val (<>:.) : t -> Base.int -> t
val (<:) : t -> t -> t

less than

val (<:.) : t -> Base.int -> t
val lt : t -> t -> t
val (>:) : t -> t -> t

greater than

val (>:.) : t -> Base.int -> t
val (<=:) : t -> t -> t

less than or equal to

val (<=:.) : t -> Base.int -> t
val (>=:) : t -> t -> t

greater than or equal to

val (>=:.) : t -> Base.int -> t
val (<+) : t -> t -> t

signed less than

val (<+.) : t -> Base.int -> t
val (>+) : t -> t -> t

signed greater than

val (>+.) : t -> Base.int -> t
val (<=+) : t -> t -> t

signed less than or equal to

val (<=+.) : t -> Base.int -> t
val (>=+) : t -> t -> t

signed greated than or equal to

val (>=+.) : t -> Base.int -> t
val (-->:) : t -> t -> t

Propositional logic implication operator

val to_string : t -> Base.string

create string from signal

val to_int : t -> Base.int

to_int t treats t as unsigned and resizes it to fit exactly within an OCaml Int.t.

  • If width t > Int.num_bits then the upper bits are truncated.
  • If width t >= Int.num_bits and bit t (Int.num_bits-1) = vdd (i.e. the msb of the resulting Int.t is set), then the result is negative.
  • If t is Signal.t and not a constant value, an exception is raised.
val to_sint : t -> Base.int

to_sint t treats t as signed and resizes it to fit exactly within an OCaml Int.t.

  • If width t > Int.num_bits then the upper bits are truncated.
  • If t is Signal.t and not a constant value, an exception is raised.
val to_int32 : t -> Base.int32
val to_sint32 : t -> Base.int32
val to_int64 : t -> Base.int64
val to_sint64 : t -> Base.int64
val to_bool : t -> Base.bool
val to_char : t -> Base.char

Convert signal to a char. The signal must be 8 bits wide.

val to_bstr : t -> Base.string

create binary string from signal

val bits_msb : t -> t Base.list

convert signal to a list of bits with msb at head of list

val bits_lsb : t -> t Base.list

convert signal to a list of bits with lsb at head of list

val to_array : t -> t Base.array

to_array s convert signal s to array of bits with lsb at index 0

val of_array : t Base.array -> t

of_array a convert array a of bits to signal with lsb at index 0

val repeat : t -> Base.int -> t

repeat signal n times

val split_in_half_msb : t -> t * t

split signal in half. The most significant bits will be in the left half of the returned tuple.

val split_lsb : ?exact:Base.bool -> part_width:Base.int -> t -> t Base.list

Split signal into a list of signals with width equal to part_width. The least significant bits are at the head of the returned list. If exact is true the input signal width must be exactly divisable by part_width. When exact is false and the input signal width is not exactly divisible by part_width, the last element will contains residual bits.

eg:

        split_lsb ~part_width:4 16b0001_0010_0011_0100 =
          [ 4b0100; 4b0011; 4b0010; 4b0001 ]

        split_lsb ~exact:false ~part_width:4 17b11_0001_0010_0011_0100 =
          [ 4b0100; 4b0011; 4b0010; 4b0001; 2b11 ]
val split_msb : ?exact:Base.bool -> part_width:Base.int -> t -> t Base.list

Like split_lsb except the most significant bits are at the head of the returned list. Residual bits when exact is false goes to the last element of the list, so in the general case split_lsb is not necessarily equivalent to split_msb |> List.rev.

val bswap : t -> t
val sll : t -> Base.int -> t

shift left logical

val srl : t -> Base.int -> t

shift right logical

val sra : t -> Base.int -> t

shift right arithmetic

val rotl : t -> Base.int -> t

rotate left

val rotr : t -> Base.int -> t

rotate right

val log_shift : ( t -> Base.int -> t ) -> t -> t -> t

shift by variable amount

val uresize : t -> Base.int -> t

uresize t w returns the unsigned resize of t to width w. If w = width t, this is a no-op. If w < width t, this selects the w low bits of t. If w > width t, this extends t with zero (w - width t).

val sresize : t -> Base.int -> t

sresize t w returns the signed resize of t to width w. If w = width t, this is a no-op. If w < width t, this selects the w low bits of t. If w > width t, this extends t with w - width t copies of msb t.

val ue : t -> t

unsigned resize by +1 bit

val se : t -> t

signed resize by +1 bit

val resize_list : resize:( t -> Base.int -> t ) -> t Base.list -> t Base.list

resize_list ?resize l finds the maximum width in l and applies resize el max to each element.

val resize_op2 : resize:( t -> Base.int -> t ) -> ( t -> t -> t ) -> t -> t -> t

resize_op2 ~resize f a b applies resize x w to a and b where w is the maximum of their widths. It then returns f a b

val reduce : f:( 'a -> 'a -> 'a ) -> 'a Base.list -> 'a

fold 'op' though list

val reverse : t -> t

reverse bits

val mod_counter : max:Base.int -> t -> t

mod_counter max t is if t = max then 0 else (t + 1), and can be used to count from 0 to max then from zero again. If max == (1<<n - 1), then a comparator is not generated and overflow arithmetic is used instead.

val compute_arity : steps:Base.int -> Base.int -> Base.int

compute_arity ~steps num_values computes the tree arity required to reduce num_values in steps. steps<=0 raises.

val compute_tree_branches : steps:Base.int -> Base.int -> Base.int Base.list

compute_tree_branches ~steps num_values returns a list of length steps of branching factors required to reduce num_values. This tends to produce a slightly more balanced sequence than just applying compute_arity at every step.

val tree : arity:Base.int -> f:( 'a Base.list -> 'a ) -> 'a Base.list -> 'a

tree ~arity ~f input creates a tree of operations. The arity of the operator is configurable. tree raises if input = [].

val priority_select : ?branching_factor:Base.int -> ( t, t ) Hardcaml__Comb_intf.with_valid2 Base.list -> ( t, t ) Hardcaml__Comb_intf.with_valid2

priority_select cases returns the value associated with the first case whose valid signal is high. valid will be set low in the returned with_valid if no case is selected.

val priority_select_with_default : ?branching_factor:Base.int -> ( t, t ) Hardcaml__Comb_intf.with_valid2 Base.list -> default:t -> t

Same as priority_select except returns default if no case matches.

val onehot_select : ?branching_factor:Base.int -> ( t, t ) Hardcaml__Comb_intf.with_valid2 Base.list -> t

Select a case where one and only one valid signal is enabled. If more than one case is valid then the return value is undefined. If no cases are valid, 0 is returned by the current implementation, though this should not be relied upon.

val popcount : ?branching_factor:Base.int -> t -> t

popcount t returns the number of bits set in t.

val is_pow2 : ?branching_factor:Base.int -> t -> t

is_pow2 t returns a bit to indicate if t is a power of 2.

val leading_ones : ?branching_factor:Base.int -> t -> t

leading_ones t returns the number of consecutive 1s from the most significant bit of t down.

val trailing_ones : ?branching_factor:Base.int -> t -> t

trailing_ones t returns the number of consecutive 1s from the least significant bit of t up.

val leading_zeros : ?branching_factor:Base.int -> t -> t

leading_zeros t returns the number of consecutive 0s from the most significant bit of t down.

val trailing_zeros : ?branching_factor:Base.int -> t -> t

trailing_zeros t returns the number of consecutive 0s from the least significant bit of t up.

val floor_log2 : ?branching_factor:Base.int -> t -> ( t, t ) Hardcaml__Comb_intf.with_valid2

floor_log2 x returns the floor of log-base-2 of x. x is treated as unsigned and an error is indicated by valid = gnd in the return value if x = 0.

val ceil_log2 : ?branching_factor:Base.int -> t -> ( t, t ) Hardcaml__Comb_intf.with_valid2

ceil_log2 x returns the ceiling of log-base-2 of x. x is treated as unsigned and an error is indicated by valid = gnd in the return value if x = 0.

val binary_to_onehot : t -> t

convert binary to onehot

val onehot_to_binary : t -> t

convert onehot to binary

val binary_to_gray : t -> t

convert binary to gray code

val gray_to_binary : t -> t

convert gray code to binary

val random : width:Base.int -> t

create random constant vector of given width

module type TypedMath = sig ... end
module Signed : TypedMath
module Uop : TypedMath with type v := t

Unsigned operations compatible with type t

module Sop : TypedMath with type v := t

Signed operations compatible with type t

val t_of_sexp : Base.Sexp.t -> t